Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.602
Filtrar
1.
Protein Sci ; 33(6): e4976, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38757374

RESUMEN

G-protein coupled receptors (GPCRs) are the largest class of membrane proteins encoded in the human genome with high pharmaceutical relevance and implications to human health. These receptors share a prevalent architecture of seven transmembrane helices followed by an intracellular, amphipathic helix 8 (H8) and a disordered C-terminal tail (Ctail). Technological advancements have led to over 1000 receptor structures in the last two decades, yet frequently H8 and the Ctail are conformationally heterogeneous or altogether absent. Here we synthesize a peptide comprising the neurotensin receptor 1 (NTS1) H8 and Ctail (H8-Ctail) to investigate its structural stability, conformational dynamics, and orientation in the presence of detergent and phospholipid micelles, which mimic the membrane. Circular dichroism (CD) and nuclear magnetic resonance (NMR) measurements confirm that zwitterionic 1,2-diheptanoyl-sn-glycero-3-phosphocholine is a potent stabilizer of H8 structure, whereas the commonly-used branched detergent lauryl maltose neopentyl glycol (LMNG) is unable to completely stabilize the helix - even at amounts four orders of magnitude greater than its critical micellar concentration. We then used NMR spectroscopy to assign the backbone chemical shifts. A series of temperature and lipid titrations were used to define the H8 boundaries as F376-R392 from chemical shift perturbations, changes in resonance intensity, and chemical-shift-derived phi/psi angles. Finally, the H8 azimuthal and tilt angles, defining the helix orientation relative of the membrane normal were measured using paramagnetic relaxation enhancement NMR. Taken together, our studies reveal the H8-Ctail region is sensitive to membrane physicochemical properties and is capable of more adaptive behavior than previously suggested by static structural techniques.


Asunto(s)
Receptores de Neurotensina , Receptores de Neurotensina/química , Receptores de Neurotensina/metabolismo , Receptores de Neurotensina/genética , Humanos , Micelas , Resonancia Magnética Nuclear Biomolecular , Péptidos/química , Péptidos/metabolismo , Dicroismo Circular , Conformación Proteica en Hélice alfa , Detergentes/química , Modelos Moleculares
2.
Sci Rep ; 14(1): 10888, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740835

RESUMEN

Ethylenediaminetetraacetic acid (EDTA), a classically used chelating agent of decalcification, maintains good morphological details, but its slow decalcification limits its wider applications. Many procedures have been reported to accelerate EDTA-based decalcification, involving temperature, concentration, sonication, agitation, vacuum, microwave, or combination. However, these procedures, concentrating on purely tissue-outside physical factors to increase the chemical diffusion, do not enable EDTA to exert its full capacity due to tissue intrinsic chemical resistances around the diffusion passage. The resistances, such as tissue inner lipids and electric charges, impede the penetration of EDTA. We hypothesized that delipidation and shielding electric charges would accelerate EDTA-based penetration and the subsequent decalcification. The hypothesis was verified by the observation of speedy penetration of EDTA with additives of detergents and hypertonic saline, testing on tissue-mimicking gels of collagen and adult mouse bones. Using a 26% EDTA mixture with the additives at 45°C, a conventional 7-day decalcification of adult mouse ankle joints could be completed within 24 h while the tissue morphological structure, antigenicity, enzymes, and DNA were well preserved, and mRNA better retained compared to using 15% EDTA at room temperature. The addition of hypertonic saline and detergents to EDTA decalcification is a simple, rapid, and inexpensive method that doesn't disrupt the current histological workflow. This method is equally or even more effective than the currently most used decalcification methods in preserving the morphological details of tissues. It can be highly beneficial for the related community.


Asunto(s)
Detergentes , Ácido Edético , ARN Mensajero , Animales , Ácido Edético/química , Ácido Edético/farmacología , Detergentes/química , Ratones , ARN Mensajero/genética , Solución Salina Hipertónica/química , Huesos/metabolismo , Huesos/efectos de los fármacos , Huesos/química , Técnica de Descalcificación/métodos
3.
Environ Sci Pollut Res Int ; 31(21): 30497-30508, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38607492

RESUMEN

Detergents are highly produced pollutants with environmental problems like foam generation and toxic effects in biota. Nonylphenol ethoxylates (NPEs) are efficient, economical, and versatile surfactants, used in detergents for more than 40 years due to their detergency capacity. In the environment, NPE biodegrades into the metabolite nonylphenol (NP), classified as an endocrine disruptor. The identification and quantification of 4-NP in a designed detergent and 30 commercially available detergents were performed to prove the degradation of NPE into 4-NP during storage time. This investigation introduces the first evidence of NPE degradation during storage in commercially available detergents, demonstrating a novel exposure pathway in humans that has not been explored before, representing potential human health risks. Therefore, simple, easy, low-cost, and available approaches to remove and substitute NP is paramount. Alkyl polyglucoside (APG) was assessed as a substitute, and the feasibility of this substitution was proven according to physical and chemical properties, cleaning performance, and antimicrobial properties. NPE substitution in detergents is demonstrated as a viable strategy to minimize exposure risks in humans and the environment.


Asunto(s)
Detergentes , Detergentes/química , Glicoles de Etileno/química , Fenoles , Tensoactivos/química , Humanos , Disruptores Endocrinos/análisis
4.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38674110

RESUMEN

Membrane proteins constitute about 20% of the human proteome and play crucial roles in cellular functions. However, a complete understanding of their structure and function is limited by their hydrophobic nature, which poses significant challenges in purification and stabilization. Detergents, essential in the isolation process, risk destabilizing or altering the proteins' native conformations, thus affecting stability and functionality. This study leverages single-particle cryo-electron microscopy to elucidate the structural nuances of membrane proteins, focusing on the SLAC1 bacterial homolog from Haemophilus influenzae (HiTehA) purified with diverse detergents, including n-dodecyl ß-D-maltopyranoside (DDM), glycodiosgenin (GDN), ß-D-octyl-glucoside (OG), and lauryl maltose neopentyl glycol (LMNG). This research not only contributes to the understanding of membrane protein structures but also addresses detergent effects on protein purification. By showcasing that the overall structural integrity of the channel is preserved, our study underscores the intricate interplay between proteins and detergents, offering insightful implications for drug design and membrane biology.


Asunto(s)
Proteínas Bacterianas , Microscopía por Crioelectrón , Detergentes , Haemophilus influenzae , Microscopía por Crioelectrón/métodos , Haemophilus influenzae/ultraestructura , Haemophilus influenzae/química , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Detergentes/química , Microscopía Electrónica de Transmisión/métodos , Proteínas de la Membrana/química , Proteínas de la Membrana/ultraestructura , Proteínas de la Membrana/metabolismo
5.
Protein Expr Purif ; 219: 106479, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38574878

RESUMEN

Owing to vast therapeutic, commercial, and industrial applications of microbial proteases microorganisms from different sources are being explored. In this regard, the gut microbiota of Monopteruscuchia were isolated and examined for the production of protease. All the isolates were primarily and secondarily screened on skim milk and gelatin agar plates. The protease-positive isolates were characterized morphologically, biochemically, and molecularly. Out of the 20 isolated strains,6 belonging to five different genera viz.Bacillus,Priestia,Aeromonas,Staphylococcus, and Serratia demonstrated proteolytic activity. Bacillussafensis strain PRN1 demonstrated the highest protease production and, thus, the largest hydrolytic clear zones in both skim milk agar (15 ± 1 mm) and gelatin (16 ± 1 mm) plates. The optimized parameters (time, pH, temperature, carbon, nitrogen) for highest protease activity and microbial growth of B.safensis strain PRN1 includes 72 h (OD600 = 0.56,1303 U/mL), pH 8 (OD600 = 0.83, 403.29 U/mL), 40 °C (OD600 = 1.75, 1849.11 U/mL), fructose (OD600 = 1.22, 1502 U/mL), and gelatin (OD600 = 1.88, 1015.33 U/mL). The enzyme was purified to homogeneity using salt-precipitation and gel filtration chromatography. The sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that the purified enzyme was a monomer of a molecular weight of ∼33 kDa. The protease demonstrated optimal activity at pH 8 and 60 °C. It was strongly inhibited by phenylmethylsulfonyl fluoride (PMSF), demonstrating that it belongs to the serine-proteases family. The compatibility of the enzyme with surfactants and commercial detergents demonstrates its potential use in the detergent industry. Furthermore, the purified enzyme showed antibacterial and blood-stain removal properties.


Asunto(s)
Bacillus , Detergentes , Serina Proteasas , Detergentes/química , Detergentes/farmacología , Serina Proteasas/aislamiento & purificación , Serina Proteasas/química , Serina Proteasas/genética , Serina Proteasas/metabolismo , Bacillus/enzimología , Bacillus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Concentración de Iones de Hidrógeno
6.
Langmuir ; 40(12): 6524-6536, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38478717

RESUMEN

Triton X-100 (TX-100) is a membrane-disrupting detergent that is widely used to inactivate membrane-enveloped viral pathogens, yet is being phased out due to environmental safety concerns. Intense efforts are underway to discover regulatory acceptable detergents to replace TX-100, but there is scarce mechanistic understanding about how these other detergents disrupt phospholipid membranes and hence which ones are suitable to replace TX-100 from a biophysical interaction perspective. Herein, using the quartz crystal microbalance-dissipation (QCM-D) and electrochemical impedance spectroscopy (EIS) techniques in combination with supported lipid membrane platforms, we characterized the membrane-disruptive properties of a panel of TX-100 replacement candidates with varying antiviral activities and identified two distinct classes of membrane-interacting detergents with different critical micelle concentration (CMC) dependencies and biophysical mechanisms. While all tested detergents formed micelles, only a subset of the detergents caused CMC-dependent membrane solubilization similarly to that of TX-100, whereas other detergents adsorbed irreversibly to lipid membrane interfaces in a CMC-independent manner. We compared these biophysical results to virus inactivation data, which led us to identify that certain membrane-interaction profiles contribute to greater antiviral activity and such insights can help with the discovery and validation of antiviral detergents to replace TX-100.


Asunto(s)
Detergentes , Fosfolípidos , Polietilenglicoles , Octoxinol/farmacología , Octoxinol/química , Detergentes/farmacología , Detergentes/química , Fosfolípidos/química , Micelas , Antivirales/farmacología , Membrana Dobles de Lípidos/química
7.
Proteomics ; 24(10): e2300339, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38299459

RESUMEN

Detergent-based workflows incorporating sodium dodecyl sulfate (SDS) necessitate additional steps for detergent removal ahead of mass spectrometry (MS). These steps may lead to variable protein recovery, inconsistent enzyme digestion efficiency, and unreliable MS signals. To validate a detergent-based workflow for quantitative proteomics, we herein evaluate the precision of a bottom-up sample preparation strategy incorporating cartridge-based protein precipitation with organic solvent to deplete SDS. The variance of data-independent acquisition (SWATH-MS) data was isolated from sample preparation error by modelling the variance as a function of peptide signal intensity. Our SDS-assisted cartridge workflow yield a coefficient of variance (CV) of 13%-14%. By comparison, conventional (detergent-free) in-solution digestion increased the CV to 50%; in-gel digestion provided lower CVs between 14% and 20%. By filtering peptides predicting to display lower precision, we further enhance the validity of data in global comparative proteomics. These results demonstrate the detergent-based precipitation workflow is a reliable approach for in depth, label-free quantitative proteome analysis.


Asunto(s)
Precipitación Química , Detergentes , Proteómica , Dodecil Sulfato de Sodio , Flujo de Trabajo , Proteómica/métodos , Dodecil Sulfato de Sodio/química , Detergentes/química , Proteoma/análisis , Proteoma/química , Humanos , Péptidos/química , Péptidos/análisis
8.
Biofabrication ; 16(2)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38394679

RESUMEN

Decellularized matrices are an attractive choice of scaffold in regenerative medicine as they can provide the necessary extracellular matrix (ECM) components, signals and mechanical properties. Various detergent-based protocols have already been proposed for decellularization of skeletal muscle tissue. However, a proper comparison is difficult due to differences in species, muscle origin and sample sizes. Moreover, a thorough evaluation of the remaining acellular matrix is often lacking. We compared an in-house developed decellularization protocol to four previously published methods in a standardized manner. Porcine skeletal muscle samples with uniform thickness were subjected to in-depth histological, ultrastructural, biochemical and biomechanical analysis. In addition, 2D and three-dimensional cytocompatibility experiments were performed. We found that the decellularization methods had a differential effect on the properties of the resulting acellular matrices. Sodium deoxycholate combined with deoxyribonuclease I was not an effective method for decellularizing thick skeletal muscle tissue. Triton X-100 in combination with trypsin, on the other hand, removed nuclear material but not cytoplasmic proteins at low concentrations. Moreover, it led to significant alterations in the biomechanical properties. Finally, sodium dodecyl sulphate (SDS) seemed most promising, resulting in a drastic decrease in DNA content without major effects on the ECM composition and biomechanical properties. Moreover, cell attachment and metabolic activity were also found to be the highest on samples decellularized with SDS. Through a newly proposed standardized analysis, we provide a comprehensive understanding of the impact of different decellularizing agents on the structure and composition of skeletal muscle. Evaluation of nuclear content as well as ECM composition, biomechanical properties and cell growth are important parameters to assess. SDS comes forward as a detergent with the best balance between all measured parameters and holds the most promise for decellularization of skeletal muscle tissue.


Asunto(s)
Detergentes , Matriz Extracelular , Animales , Porcinos , Detergentes/química , Detergentes/metabolismo , Detergentes/farmacología , Matriz Extracelular/metabolismo , Octoxinol/química , Octoxinol/metabolismo , Octoxinol/farmacología , Músculo Esquelético , Dodecil Sulfato de Sodio/química , Dodecil Sulfato de Sodio/metabolismo , Dodecil Sulfato de Sodio/farmacología , Andamios del Tejido , Ingeniería de Tejidos/métodos
9.
Anal Chem ; 96(6): 2574-2581, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38291764

RESUMEN

Mass spectrometry (MS) analysis is often challenged by contaminations from detergents, salts, and polymers that compromise data quality and can damage the chromatography and MS instruments. However, researchers often discover contamination issues only after they acquire the data. There is no existing contaminant assay that is sensitive enough to detect trace amounts of contaminants from a few microliters of samples prior to MS analysis. To address this crucial need in the field, we developed a sensitive, rapid, and cost-effective contaminant spot check and removal assay (ContamSPOT) to detect and quantify trace amounts of contaminants, such as detergents, salts, and other chemicals commonly used in the MS sample preparation workflow. Only 1 µL of the sample was used prior to MS injection to quantify contaminants by ContamSPOT colorimetric or fluorometric assay on a thin layer chromatography (TLC) plate. We also optimized contaminant removal methods to salvage samples with minimal loss when ContamSPOT showed a positive result. ContamSPOT was then successfully applied to evaluate commonly used bottom-up proteomic methods regarding the effectiveness of removing detergent, peptide recovery, reproducibility, and proteome coverage. We expect ContamSPOT to be widely adopted by MS laboratories as a last-step quality checkpoint prior to MS injection. We provided a practical decision tree and a step-by-step protocol with a troubleshooting guide to facilitate the use of ContamSPOT by other researchers. ContamSPOT can also provide a unique readout of sample cleanliness for developing new MS-based sample preparation methods in the future.


Asunto(s)
Detergentes , Proteómica , Detergentes/química , Proteómica/métodos , Reproducibilidad de los Resultados , Sales (Química) , Espectrometría de Masas/métodos
10.
Int J Biol Macromol ; 260(Pt 1): 129507, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244731

RESUMEN

Halophiles are excellent sources of detergent proteases that are attributed to stability in alkaline pH, salts, surfactants, and hydrophobic solvents. The lower enzymatic yields and tedious downstream processes necessitate the search for newer halophilic sources. We have previously reported a halotolerant Exiguobacterium sp. TBG-PICH-001, which secretes solvent-tolerant alkaline protease/s. The present study describes the heterologous expression of two protease genes, namely, rsep metalloprotease (WP_195864791, 1.23 Kb) and tpa serine protease (WP_195864453, 0.879 Kb) genes. These were cloned into the pET 22b + plasmid vector and expressed in Escherichia coli BL21(DE3). The recombinant proteases rsep and tpa showed respective yields of 6.3 and 6.7 IU/mg, 11 and 12-fold higher than the crude native protease/s from TBG-PICH-001. These showed soluble expression at 46 and 32 KDa, respectively. These were purified to homogeneity through Ni-NTA-affinity chromatography. The purified proteases were characterized for properties like pH & temperature optima and stability, substrate specificity, kinetic parameters, and detergent attributes. They showed affinity towards various substrates with a respective Km of 392 and 301 µM towards casein. The recombinant proteases exhibited stability in the alkaline pH (7-10), surfactants, metal ions, detergents, and hydrophobic solvents, rendering their suitability as detergent additives.


Asunto(s)
Detergentes , Exiguobacterium , Exiguobacterium/metabolismo , Detergentes/química , Solventes/química , Estabilidad de Enzimas , Serina Proteasas/química , Tensoactivos , Temperatura , Concentración de Iones de Hidrógeno , Proteínas Bacterianas/química
11.
Bioconjug Chem ; 35(2): 223-231, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38215010

RESUMEN

Membrane protein structures are essential for the molecular understanding of diverse cellular processes and drug discovery. Detergents are not only widely used to extract membrane proteins from membranes but also utilized to preserve native protein structures in aqueous solution. However, micelles formed by conventional detergents are suboptimal for membrane protein stabilization, necessitating the development of novel amphiphilic molecules with enhanced protein stabilization efficacy. In this study, we prepared two sets of tandem malonate-derived glucoside (TMG) variants, both of which were designed to increase the alkyl chain density in micelle interiors. The alkyl chain density was modulated either by reducing the spacer length (TMG-Ms) or by introducing an additional alkyl chain between the two alkyl chains of the original TMGs (TMG-Ps). When evaluated with a few membrane proteins including a G protein-coupled receptor, TMG-P10,8 was found to be substantially more efficient at extracting membrane proteins and also effective at preserving protein integrity in the long term compared to the previously described TMG-A13. This result reveals that inserting an additional alkyl chain between the two existing alkyl chains is an effective way to optimize detergent properties for membrane protein study. This new biochemical tool and the design principle described have the potential to facilitate membrane protein structure determination.


Asunto(s)
Detergentes , Proteínas de la Membrana , Proteínas de la Membrana/metabolismo , Detergentes/química , Micelas
12.
J Biomol NMR ; 78(1): 31-37, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38072902

RESUMEN

For the A2A adenosine receptor (A2AAR), a class A G-protein-coupled receptor (GPCR), reconstituted in n-dodecyl-ß-D-maltoside (DDM)/|||||cholesteryl hemisuccinate (CHS) mixed micelles, previous 19F-NMR studies revealed the presence of multiple simultaneously populated conformational states. Here, we study the influence of a different detergent, lauryl maltose neopentyl glycol (LMNG) in mixed micelles with CHS, and of lipid bilayer nanodiscs on these conformational equilibria. The populations of locally different substates are pronouncedly different in DDM/|||||CHS and LMNG/|||||CHS micelles, whereas the A2AAR conformational manifold in LMNG/|||||CHS micelles is closely similar to that in the lipid bilayer nanodiscs. Considering that nanodiscs represent a closer match of the natural lipid bilayer membrane, these observations support that LMNG/|||||CHS micelles are a good choice for reconstitution trials of class A GPCRs for NMR studies in solution.


Asunto(s)
Detergentes , Membrana Dobles de Lípidos , Membrana Dobles de Lípidos/química , Detergentes/química , Micelas , Resonancia Magnética Nuclear Biomolecular , Receptores Purinérgicos P1 , Receptor de Adenosina A2A/química
13.
Allergy ; 79(1): 128-141, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37766519

RESUMEN

BACKGROUND: Epithelial barrier impairment is associated with many skin and mucosal inflammatory disorders. Laundry detergents have been demonstrated to affect epithelial barrier function in vitro using air-liquid interface cultures of human epithelial cells. METHODS: Back skin of C57BL/6 mice was treated with two household laundry detergents at several dilutions. Barrier function was assessed by electric impedance spectroscopy (EIS) and transepidermal water loss (TEWL) measurements after the 4 h of treatments with detergents. RNA sequencing (RNA-seq) and targeted multiplex proteomics analyses in skin biopsy samples were performed. The 6-h treatment effect of laundry detergent and sodium dodecyl sulfate (SDS) was investigated on ex vivo human skin. RESULTS: Detergent-treated skin showed a significant EIS reduction and TEWL increase compared to untreated skin, with a relatively higher sensitivity and dose-response in EIS. The RNA-seq showed the reduction of the expression of several genes essential for skin barrier integrity, such as tight junctions and adherens junction proteins. In contrast, keratinization, lipid metabolic processes, and epidermal cell differentiation were upregulated. Proteomics analysis showed that the detergents treatment generally downregulated cell adhesion-related proteins, such as epithelial cell adhesion molecule and contactin-1, and upregulated proinflammatory proteins, such as interleukin 6 and interleukin 1 beta. Both detergent and SDS led to a significant decrease in EIS values in the ex vivo human skin model. CONCLUSION: The present study demonstrated that laundry detergents and its main component, SDS impaired the epidermal barrier in vivo and ex vivo human skin. Daily detergent exposure may cause skin barrier disruption and may contribute to the development of atopic diseases.


Asunto(s)
Detergentes , Piel , Humanos , Ratones , Animales , Detergentes/efectos adversos , Detergentes/química , Detergentes/metabolismo , Ratones Endogámicos C57BL , Piel/metabolismo , Epidermis/metabolismo , Inflamación/metabolismo
14.
Chempluschem ; 89(1): e202300386, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37668309

RESUMEN

Detergents are amphiphilic molecules that serve as enabling steps for today's world applications. The increasing diversity of the detergentome is key to applications enabled by detergent science. Regardless of the application, the optimal design of detergents is determined empirically, which leads to failed preparations, and raising costs. To facilitate project planning, here we review synthesis strategies that drive the diversification of the detergentome. Synthesis strategies relevant for industrial and academic applications include linear, modular, combinatorial, bio-based, and metric-assisted detergent synthesis. Scopes and limitations of individual synthesis strategies in context with industrial product development and academic research are discussed. Furthermore, when designing detergents, the selection of molecular building blocks, i. e., head, linker, tail, is as important as the employed synthesis strategy. To facilitate the design of safe-to-use and tailor-made detergents, we provide an overview of established head, linker, and tail groups and highlight selected scopes and limitations for applications. It becomes apparent that most recent contributions to the increasing chemical diversity of detergent building blocks originate from the development of detergents for membrane protein studies. The overview of synthesis strategies and molecular blocks will bring us closer to the ability to predictably design and synthesize optimal detergents for challenging future applications.


Asunto(s)
Detergentes , Proteínas de la Membrana , Detergentes/química , Proteínas de la Membrana/química
15.
Biotechnol J ; 19(1): e2300441, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38010865

RESUMEN

This study focused on the isolation and identification of a novel alkaline protease-producing strain from Lake Van, the largest soda lake on Earth. The objective was to purify, characterize, and investigate the potential application of protease in the detergent industry. Through a combination of classical and molecular methods, the most potent protease producer was identified as Exiguobacterium alkaliphilum VLP1. The purification process, involving ammonium sulfate precipitation, ultrafiltration, and anion exchange chromatography, resulted in a 45-fold purification with a yield of 6.4% and specific activity of 1169 U mg-1 protein. The enzyme exhibited a molecular weight of 69 kDa, a Km value of 0.4 mm, and a maximal velocity (Vmax ) value of 2000 U mg-1 . The optimum activity was observed at 40°C and potential of hydrogen (pH) 9, while the enzyme also exhibited remarkable stability in the ranges of 30-60°C and pH 9-12. Notably, this study represents the first report of an alkaline protease isolated and characterized from E. alkaliphilum. This study also highlighted the potential of the enzyme as a detergent additive, as it showed compatibility with commercial detergents and effectively removed blood and chocolate stains from fabrics.


Asunto(s)
Detergentes , Extremófilos , Detergentes/química , Extremófilos/metabolismo , Endopeptidasas/química , Proteínas Bacterianas/metabolismo , Péptido Hidrolasas/metabolismo , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Temperatura , Exiguobacterium
16.
J Am Soc Mass Spectrom ; 34(12): 2662-2671, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37956121

RESUMEN

Membrane proteins (MPs) play many critical roles in cellular physiology and constitute the majority of current pharmaceutical targets. However, MPs are comparatively understudied relative to soluble proteins due to the challenges associated with their solubilization in membrane mimetics. Native mass spectrometry (nMS) has emerged as a useful technique to probe the structures of MPs. Typically, nMS studies using MPs have employed detergent micelles to solubilize the MP. Oftentimes, the detergent micelle that the MP was purified in will be exchanged into another detergent prior to analysis by nMS. While methodologies for performing detergent exchange have been extensively described in prior reports, the effectiveness of these protocols remains understudied. Here, we present a critical analysis of detergent exchange efficacy using several model transmembrane proteins and a variety of commonly used detergents, evaluating the completeness of the exchange using a battery of existing protocols. Our data include results for octyl glucoside (OG), octaethylene glycol monododecyl ether (C12E8), and tetraethylene glycol monooctyl ether (C8E4), and these data demonstrate that existing protocols are insufficient and yield incomplete exchange for the proteins under the conditions probed here. In some cases, our data indicate that up to 99% of the measured detergent corresponds to the original pre-exchange detergent rather than the desired post-exchange detergent. We conclude by discussing the need for new detergent exchange methodologies alongside improved exchange yield expectations for studying the potential influence of detergents on MP structures.


Asunto(s)
Detergentes , Proteínas de la Membrana , Proteínas de la Membrana/metabolismo , Detergentes/química , Micelas , Espectrometría de Masas , Éteres
17.
Anal Chem ; 95(47): 17212-17219, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37963237

RESUMEN

Membrane proteins represent the majority of clinical drug targets and are actively involved in a range of cellular processes. However, the complexity of membrane mimetics for membrane protein solubilization poses challenges for native mass spectrometry (MS) analyses. The most common approach for native MS analyses of membrane proteins remains offline buffer exchange into native MS-compatible buffers prior to manual sample loading into static nano-ESI emitters. This laborious process requires relatively high sample consumption and optimization for the individual proteins. Here, we developed online buffer exchange coupled to native mass spectrometry (OBE-nMS) for analyzing membrane proteins in different membrane mimetics, including detergent micelles and nanodiscs. Detergent screening for OBE-nMS reveals that mobile phases containing ammonium acetate with lauryl-dimethylamine oxide are most universal for characterizing both bacterial and mammalian membrane proteins in detergent. Membrane proteins in nanodiscs simply require ammonium acetate as the mobile phase. To preserve the intact nanodiscs, a novel switching electrospray approach was used to capture the high-flow separation on the column with a low-flow injection to MS. Rapid OBE-nMS completes each membrane protein measurement within minutes and thus enables higher-throughput assessment of membrane protein integrity prior to its structural elucidation.


Asunto(s)
Detergentes , Proteínas de la Membrana , Animales , Proteínas de la Membrana/química , Detergentes/química , Espectrometría de Masas/métodos , Acetatos , Indicadores y Reactivos , Espectrometría de Masa por Ionización de Electrospray/métodos , Mamíferos
18.
J Chem Inf Model ; 63(22): 7159-7170, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37939203

RESUMEN

Membrane proteins are difficult to isolate and purify due to their dependence on the surrounding lipid membrane for structural stability. Detergents are often used to solubilize these proteins, with this approach requiring a careful balance between protein solubilization and denaturation. Determining which detergent is most appropriate for a given protein has largely been done empirically through screening, which requires large amounts of membrane protein and associated resources. Here, we describe an alternative to conventional detergent screening using a computational modeling approach to identify the most likely candidate detergents for solubilizing a protein of interest. We demonstrate our approach using ghrelin O-acyltransferase (GOAT), a member of the membrane-bound O-acyltransferase family of integral membrane enzymes that has not been solubilized or purified in active form. A computationally derived GOAT structural model provides the only structural information required for this approach. Using computational analysis of detergent ability to penetrate phospholipid bilayers and stabilize the GOAT structure, a panel of common detergents were rank-ordered for their proposed ability to solubilize GOAT. The simulations were performed at all-atom resolution for a combined simulation time of 24 µs. Independently, we biologically screened these detergents for their solubilization of fluorescently tagged GOAT constructs. We found computational prediction of protein structural stabilization was the better predictor of detergent solubilization ability, but neither approach was effective for predicting detergents that would support GOAT enzymatic function. The current rapid expansion of membrane protein computational models lacking experimental structural information and our computational detergent screening approach can greatly improve the efficiency of membrane protein detergent solubilization, supporting downstream functional and structural studies.


Asunto(s)
Detergentes , Proteínas de la Membrana , Animales , Detergentes/química , Detergentes/metabolismo , Proteínas de la Membrana/química , Fosfolípidos , Aciltransferasas , Cabras/metabolismo , Solubilidad
19.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37834312

RESUMEN

Integral membrane proteins are important components of a cell. Their structural and functional studies require production of milligram amounts of proteins, which nowadays is not a routine process. Cell-free protein synthesis is a prospective approach to resolve this task. However, there are few known membrane mimetics that can be used to synthesize active membrane proteins in high amounts. Here, we present the application of commercially available "Facade" detergents for the production of active rhodopsin. We show that the yield of active protein in lipid bicelles containing Facade-EM, Facade-TEM, and Facade-EPC is several times higher than in the case of conventional bicelles with CHAPS and DHPC and is comparable to the yield in the presence of lipid-protein nanodiscs. Moreover, the effects of the lipid-to-detergent ratio, concentration of detergent in the feeding mixture, and lipid composition of the bicelles on the total, soluble, and active protein yields are discussed. We show that Facade-based bicelles represent a prospective membrane mimetic, available for the production of membrane proteins in a cell-free system.


Asunto(s)
Membrana Dobles de Lípidos , Proteínas de la Membrana , Proteínas de la Membrana/química , Membrana Dobles de Lípidos/química , Detergentes/química , Sistema Libre de Células , Micelas
20.
Biomol NMR Assign ; 17(2): 205-209, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37405583

RESUMEN

Dengue virus is an important human pathogen affecting people especially in tropical and subtropical regions. Its genome encodes seven non-structural proteins that are important for viral assembly and replication. Dengue NS2B is a membrane protein containing four transmembrane helices and involved in protein-protein interactions. Its transmembrane helices are critical for location of NS2B on the cell membrane while one cytoplasmic region composed of approximately 40 amino acids serves as a cofactor of viral NS3 protease by forming a tight complex with the N-terminal region of NS3. Here, we report the backbone resonance assignments for a dengue NS2B construct referred to as mini-NS2B containing only the transmembrane regions without NS3 cofactor region in detergent micelles. Mini-NS2B exhibits well-dispersed cross-peaks in the 1H-15N-HSQC spectrum and contains four helices in solution. The available mini-NS2B and its assignment will be useful for determining the structure of NS2B and identifying small molecules binding to the transmembrane regions.


Asunto(s)
Dengue , Péptido Hidrolasas , Humanos , Micelas , Detergentes/química , Resonancia Magnética Nuclear Biomolecular , Proteínas no Estructurales Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA